1月 08

python 连接hbase存、取图片

  连接hbase1.0.4需要使用Thrift,我用的是python2.6。
  安装thrift。下载地址https://dist.apache.org/repos/dist/release/thrift/0.9.0/thrift-0.9.0.tar.gz解压后安装命令。
在hbase服务器上,确保hbase服务已经启动。在thrift目录中,用管理员运行一下命令安装。
./configure
make
make install

  安装完毕生成hbase的client代码命令格式如下,
thrift –gen
登陆到hbase的权限进入
$ cd hbase/src/main/resources/org/apache/hadoop/hbase/thrift

生成python的
$ thrift –gen py Hbase.thrift
再生成一个C的学习备用,与本文无关
$ thrift –gen c_glib Hbase.thrift

将gen-py文件夹下的hbase文件夹拷贝到要连接hbase的服务器的python目录下,我用的是python2.6,自己手动安装的。命令如下
cp -R hbase /usr/local/lib/python2.6/site-packages/

拷贝完毕用import导入 hbase成功。开始写代码了。参考hbase里的例子在hbase/src/examples/中。

  我的任务就是把某个目录下,以jpg结尾的图片放到hbase里,因为图片名没有重复,所以用图片名做row name。hbase手动建表’hbase(main):013:0> create ‘img’, ‘data:”。

  首先统计一下照片的数量。这个image目录下只有jpg的图片,使用匹配只是备将来使用。下面只是测试脚本,不关心业务逻辑。

# find /image/ -name \*.jpg -type f |wc -l
13140

# du -s -h /image
303M /image/

  本地共有13140张照片共303M,写入hbase测试脚本如下:

开始测试脚本
# time python hbase_test.py

real 1m15.471s
user 0m4.881s
sys 0m2.867s

到hbase里查看写入的数量,证明已经完全写入。
hbase(main):001:0> count ‘img’
:
:
:
13140 row(s) in 10.2780 seconds

2013-5-16. 因为对hadoop理解不足。以下写的有问题,提醒大家注意。

hbase使用hadoop进行存储,查看hadoop的磁盘使用量。
26K namenode1/
298M u01/

  我的内存给namenode可以使用25G。根据以上数据计算结果如下:
((25*1000*1000)/26)*298= 286538461M = 286538G = 286 T

  如果每台服务器有三块1T存储硬盘,此集群可以有95台服务器。共存储此类照片大约为12634615360张。内网测试,写入速度3.9M。

  注:有一点需要注意,写入的数据删除后磁盘空间也不会释放,原理应该改和mongodb一样,但是没有仔细查看。

11月 22

python 获取阿里OSS存储图片,在内存中处理图片

  申请了阿里的云存储OSS来存储图片。需要的时候直根据图片名,到阿里OSS中获得图片,然后切割成需要尺寸,最后返回给客户。获取后的切割操为内存操作,这样就不用占硬盘的IO了。
  Image使用的是PIL。阿里的SDK。SDK在python2.6调试报错。SDK比较古老,如报MD5的错误可以将oss_util.py开始的“import md5”修改为“from hashlib import md5”
  部分代码如下:

  测试效果还可以,一个一核的CPU,512M内存,1M带宽跑满CPU使用率10%。买台最便宜的阿里主机,直接从OSS里获取就不用再收费了。框架用的是tornado。